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Rocking and rolling: A can that appears to rock might actually roll
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A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then
rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat
circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the
after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the
other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a
flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results
to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost
but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions
involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling
disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn
depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry
axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result
with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of
turn is just over 7 and the sudden rolling motion superficially appears as a nearly symmetric collision leading

to leaning on an almost diametrically opposite point on the bottom rim.
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I. INTRODUCTION

After a meal or a drink, fidgety people sometimes play
with the available props, such as empty glasses, bottles, and
soda cans. These containers are all nearly axisymmetric ob-
jects with round bottoms. A natural form of play is to roll
these containers on their circular bottoms. When a slightly
tipped container (Fig. 1) is let go, sometimes one sees it fall
upright, make a slight banging sound, and then tip up again
at another angle, then fall back upright again, and so on for a
few rocking oscillations. Because these oscillations usually
damp quickly its easy to miss the details of the motions. To
aid the eye, instead of just letting go of the slightly tilted
container, you can flick its top forward with the fingers. This
provides an initial righting angular velocity along the axis
about which the container was initially tipped (too large an
angular velocity will cause the container to lift off the table
as it pivots over). The tipping container, as before, falls to a
vertical configuration, at which time its bottom circular face
bangs on the table. After this bang, the container tips up onto
the other side and maybe falls over. When this experiment is
performed with a container that is not too tall and too thin,
you can see that the container does not fall exactly onto the
diametrically opposite side of the bottom rim. That is, point
A on the bottom of the container that initially contacted the
table and the new contact point B, that the container rocks up
onto, are not exactly 180° apart. This experiment (video
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available online [1]) is shown schematically in Fig. 2. Figure
3 shows a histogram of one particular container’s orienta-
tions after we repeatedly flicked it. The distribution is
strongly bimodal with no symmetric falls over many re-
peated trials.

Note the apparent symmetry breaking with Ays# 7. Is this
deviation from symmetric rocking due to imperfect hand re-
lease? Here we show that the breaking of apparent symmetry
is consistent with the simplest deterministic theories, namely,
smooth rigid body dynamics. We derive formulas for the

FIG. 1. (Color online) Releasing a tipped container. After this
release the container falls and rocks as shown in Figs. 2 and 3.
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FIG. 2. Toppling a container. Schematic time sequence of con-
tainer (illustrated as a cylinder) during one tipping experiment: side
view (top row) and top view (second row). (a) Tilt a container and
flick its top with your finger so that (b) the container becomes
vertical again, and then (c), (d) tips part way over some more and
then eventually (d) has sufficient energy to fall on its side. The
container hardly ever falls symmetrically to the diametrically oppo-
site side with Ay=1r. See Fig. 3.

“angle of turn,” for both the perfect-rolling and for the
frictionless-sliding cases given infinitesimal symmetry
breaking in the initial conditions. The results here generalize
some of the nearly falling-flat results of Cushman and Duis-
termaat [2]; they considered the special case of the pure roll-
ing of flat disks.

II. CANDIDATE THEORIES FOR SYMMETRY BREAKING

If the table was perfectly planar and horizontal, the con-
tainer’s bottom was perfectly circular, and the container was
perfectly axisymmetric, then an initial condition with a
purely righting angular velocity would result in a collision in
which, just as the container becomes vertical, all points on
the container’s bottom slap the table-top simultaneously. The
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FIG. 3. (Color online) Typical toppled container orientations. A
histogram of the directions along which a container fell for 42 trials.
The container always falls to one side or another, but essentially
never to the diametrically opposite side corresponding to 180°. The
distribution about A¢=180° is strongly bimodal. Whether the fall is
to the left or to the right depends sensitively on initial conditions.
The leftward falls have a mean of about A¥=180°+33° and the
rightward falls have a mean of about Ay=180°-37.9°. For this
cylinder, theory predicts A¢=180° £40° for frictionless sliding
and Ay=180° £22° for rolling with no slip.
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consequence of such a rigid-container collision is not com-
putable since algebraic rigid-body collision laws are not
well-defined for simultaneous multipoint collisions; for ex-
ample, the order of the impulse locations is then ill defined
[3-6]. Basing the rocking outcome on such a perfect flat
collision would be basing the outcome on details of the de-
formation, that is, leaving the world of rigid-object mechan-
ics.

Geometric perturbations to the circular rim can similarly
lead to two-point collisions, where both points of contact are
now on the rim. The second point of contact could be dia-
metrically opposite to the first point, or anywhere else on the
rim. We could then compute the consequences of, say, a plas-
tic collision at the new point of contact. However, the con-
sequences of the collision would depend on the location of
the geometric imperfection. For a given collision point, such
a theory could predict the energy dissipation at the collision.
But such a theory cannot be useful in predicting a systematic
breaking of symmetry as seen in Fig. 3. For any given im-
perfection, the motion is deterministic and depends on the
location of the impection, and there is no reason to expect
that the location of the imperfection would have a distribu-
tion similar to that in Fig. 3.

Assuming a perfectly flat rigid bottom, the circle-
slapping-ground simultaneous collision is essentially impos-
sible. After all, the container is being launched by imperfect
human hands that cannot provide any exact initial conditions.
Accounting for various symmetries in the problem, the set of
all motions of a container rolling without slip is three dimen-
sional; the space of solutions could be parametrized by, say,

the minimum tip angle ¢,;,, the yaw rate  at that position,

and the rolling rate 6 at that position. The set of solutions
that leads to a face-down collision can be characterized with
only two parameters, a set with codimension 1 [2,7,8]. So,
small generic perturbations of a “collisional” initial condition
result, with probability 1, in a noncollisional motion de-
scribed by the smooth dynamics of the container rolling or
sliding on its circular bottom rim.

The rest of this paper is about the near-collisional mo-
tions. We will see that these near-collisional motions involve
rapid rolling or sliding of the container on its bottom rim, so
that the contact point appears to have switched by a finite
angle that is greater than 180°. For this analysis, we assume
a geometrically perfect container (axisymmetric) and table
(flat).

III. DYNAMICS OF ROCKING BY ROLLING

Consider a container with mass m, bottom radius R [9],
and the center-of-mass at a height H from the bottom. The
moment of inertia is C about it’s symmetry axis and is A
about any axis passing through the center of mass and per-
pendicular to the symmetry axis. For the disk of Ref. [2],
H=0 and A=C/2. In our case, H=0 and A=C/2.

The center of mass of the container is at (xg,yg,2g) in an
inertial frame e,-e,-e, at rest with respect to the table. The
reference orientation of the container is vertical as shown in
Fig. 4(a). Any other orientation of the container can be ob-
tained from the reference orientation by a sequence of three
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FIG. 4. (Color online) Definition of the Euler angles and coor-
dinate axes used to define the orientation of the container.

rotations, defining corresponding Euler angles as illustrated
in Fig. 4. The first rotation (“yaw” or “steer”) is about e, by
an angle . This rotation also transforms the inertial coordi-
nate axes to e, -e,-e;;. The second rotation (“pitch” or
“tilt”) by an angle —¢ about the e, axis results in the
€,,-€,-€,, frame and determines the orientation of the con-
tainer up to a rotation € about the body-fixed symmetry axis
(e, axis). The angular velocity of the container in the rotat-
ing e,,-€,,-e,, frame is therefore entirely along the symmetry
axis e, and this relative angular velocity magnitude is de-

noted by 6.

We will mostly consider two simple extremes for the fric-
tional interaction between the table and the container’s bot-
tom, namely, sliding without friction and rolling without slip.
For pure rolling, the Euler angles and their first and second
time derivatives determine the center-of-mass position (rela-
tive to the contact point), the center-of-mass velocity and
acceleration, as well as the container’s angular velocity and
angular acceleration. The three second-order ordinary differ-
ential equations (ODEs) that determine the evolution of the
orientation ¢, ¢, and 6 follow from angular momentum bal-
ance about the contact point. The equations are

Quih+ Qpd+0i30=5, i=1.23. (1)

where
Q,,=A sin ¢— mHR cos ¢+ mH* sin ¢,
01,=0, Q;3=-mHR,
021=0x1=0, Qp=-mR*—mH*-A,
Q3;= C cos ¢+ mR? cos ¢ — mRH sin ¢,
Q32:O, Q33: C+mR2,
S, =(C=2A-2mH?) i cos ¢+ CPHH—2mHR b sin ¢,
S, =(C—=A+mR>=mH?) 7 sin 2¢/2 + (C + mR?) 6 sin ¢
+mHR 0 cos ¢+ mHR? cos 2¢
+mg(R cos ¢— H sin @),
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Sy = Cipp sin b+ 2mRipyP(R sin ¢+ H cos ¢). (2)

These equations are derived in Appendix A. Because the
center-of-mass velocity is determined by the Euler angles
and their rates, once these are known the center-of-mass po-
sition can be found by integration.

For the frictionless sliding of the cylinder on its circular
bottom, the equations of motion are also given by Eq. (1) but
with

O =Asing, 01,=03=0,=0,

0,,=—A +mHR sin 2¢p— mH? sin* ¢ — mR? cos” ¢,

0,3=0, Q3=Ccos¢d, 03=0, 033=C,

S, =—2Ay cos ¢+ ChO+ Cifscos ¢,

S, =(1/2)(C=A)y? sin 2+ COYsin ¢+ mgR cos ¢
— mgH sin ¢ — mHR ¢* cos 2¢
+(1/2)m(H? = R?) ¢? sin 2¢p,

Sy = Cifd sin . (3)

When the table is frictionless, the horizontal velocity of
the center-of-mass is a constant, so that the horizontal posi-
tion is independent of the orientation. The vertical position of
the center-of-mass is simply given by z;=H cos ¢+R sin ¢.
Without loss of generality the center-of-mass can be taken as
on a fixed vertical line.

Our initial discovery of the phenomenon described here
was found in numerical simulations of the equations above.
We used an adaptive time step, stiff integrator because the
solutions of interest have vastly changing time scales. The
singularity of the Euler-angle description in the near-vertical
configuration also contributes to the stiffness of the equa-
tions.

For simplicity of presentation, we first describe in detail
the results of integration when the container does not slip
with respect to the table. First, we integrate the equations
with initial conditions that lead exactly to a face-down col-
lision ¢(0)=6(0)=0, <0, and say, 0< p< /2. As would
be expected, the container lands in a manner that all of its
bottom face simultaneously reaches the horizontal tabletop.
Up to this time the motion of the container is identical to that
of an inverted pendulum hinged at the contact point A. The
integration becomes physically meaningless at that collision
point.

In the vicinity of these collisional motions, the solutions
of the equations of motion here do not have smooth depen-
dence of solutions on initial conditions. To obtain a near-
collisional motion, we set (0)=0(e), H(0)=0(e), $<O0,
and 0< @(0) < /2, where € is a small quantity. The results
of the integration are shown in Fig. 5. The plot of ¢(r) sug-
gests a motion in which the container’s bottom face periodi-
cally comes close to touching the table (¢— 0), but then gets
“repelled” by the floor as if by an elastic collision, so that the
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FIG. 5. (Color online) Results of a typical simulation of a con-
tainer’s face almost but not quite falling flat on the table top. Physi-
cal parameters correspond to the can shown in Fig. 1 and used for
the experiments in Fig. 3: m=0.070, A=5.1X 1073, C=8x 1073, ¢
=9.8, R=5.1X107%, H=6.9X107? in consistent SI units. Initial
conditions ¥(0)=0, ¢(0)=0.005, ¢(0)=7/6, $(0)=-0.5, #(0)=0,
6(0)=0.005. All the angles are in radians. The step change in ¢ is
the angle of turn Ay, and is a little more than 7 as noted in the
caption for Fig. 3.

container rocks down and up periodically, ad infinitum, with-
out losing any energy, as expected from this dissipation-free

system. We notice that when ¢=0, ¢ changes almost dis-

continuously. Also, when ¢ is close to zero, both z,/f and @
blow up to very large values, resulting in almost discontinu-
ous changes in the corresponding angles ¢ and 6.

Note that we are simply simulating the apparently smooth
differential equations, and not applying an algebraic transi-
tion rule for a collision. As € goes to zero, the angle rates i
and 6 grow without bound, but the magnitude of the angular
velocity vector is always bounded, as it must be since energy
remains a constant throughout the motion. In particular,
while the angle rates 6 and ¢ are large, they are very close to
being equal and opposite [ §=—1, Fig. 5(i)].

Let us examine the consequences of a rapid finite change
in ¢ when ¢=0. The position of the contact point
P(xp,yp,zp) on the ground relative to the center-of-mass
(xg>vG»-z¢) is given by the following equations:

Xp=Xg— R cos ¢ cos y+ H sin ¢,
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vp=yg—Rsin ¢,

Zp=2g—Rsin ¢pcos y—Hcos ¢p=0.

When ¢=0 and ¢ is not particularly close to any multiple of
/2, the contact point position is given by

Xp=Xxg— R cos i,
Yp=yc—Rsin g,

zp=z7c—H=0. (4)

Given that x;,y5,2g do not change much during the brief
near-collisional phase (because center-of-mass velocity is fi-
nite), we can see from Eq. (4) that a rapid continuous change
in ¢ corresponds to a rapid continuous change in the contact
point in a circle with the center O(xg,y¢,0). Thus the “angle
of turn” (AOB) defined earlier is simply the change in . At
the singular limit of a near-collisional motion arbitrarily
close to a collisional motion, this continuous but steep
change in ¢ approaches a step change—this is the “limiting
angle of turn” and we denote this by A/,

We consider the near-collisional motions of the no-slip
container that can be characterized as being the pasting-
together of two qualitatively distinct motions of vastly dif-
ferent time scales: (1) inverted pendulumlike motion about
an essentially fixed contact point when the tilt angle ¢ is
large and (2) rapid rolling of the container which accom-
plishes in infinitesimal time, a finite change in the contact
point, and a sign change in the tilt rate ¢.

Note that the near-collisional motion for a container roll-
ing without slip requires very high friction forces [for non-
zero H, see Fig. 5(g)]. However, plotting the ratio of the
required friction forces with the normal reaction, we find that
only a finite coefficient of friction is required for preventing
slip even in the collisional limit [Fig. 5(h)].

The other extreme of exactly zero friction is similar. Here,
the horizontal component of the center-of-mass velocity may
be taken to be zero. The near collisional motions for a con-
tainer sliding without friction are again characterized as con-
sisting of two qualitatively different phases: (1) a tipping
phase when ¢ is not too small, involving the container mov-
ing nearly in a vertical plane, the center-of-mass moving
only vertically, and the contact point slipping without friction
and (2) a rapid sliding phase in which the sign of ¢ is re-
versed almost discontinuously, and the contact point moves
by a finite angle in infinitesimal time.

The angle of turn for the frictionless case and the no-slip
case are different in general (when H# 0). In the next two
sections, we derive the formulas for the angle of turn by
taking into account the two-phase structure of the near-
collisional motion.

IV. ANGLE OF TURN FOR NO-SLIP ROLLING

The rigid body dynamics of disks, containers, and similar
objects with special symmetries, have been discussed at
length by a number of authors, including distinguished
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mechanicians such as Chaplygin, Appell, and Korteweg.
Their works include complete analytical characterizations of
the solutions to the relevant equations of motion, typically
involving nonelementary functions such as the hypergeomet-
ric. Reasonable reviews of such literature can be found, for
instance, in Refs. [7,8]. We will not use these somewhat
cumbersome general solutions but will analyze only the spe-
cial near-collisional motion of interest to us.

The calculation below may be called, variously, a bound-
ary layer calculation, a matched asymptotics calculation (but
we are not interested in an explicit matching) or a singular
perturbation calculation. Essentially, we take advantage of
the presence of two dynamical regimes with vastly different
time scales, each regime simple to analyze by itself. The
overall motion can be obtained approximately by suitably
pasting together the small-¢ and the large-¢ solutions. But
the angle of turn is entirely determined by the small-¢ re-
gime, as will be seen below.

First, consider Eq. (1) with i=1 in the limit of small ¢, so
that we can use sin ¢=¢ and cos ¢=1, and generally neglect
terms of O(¢). We obtain

(Adp— mHR + mH> ) s— mHR
=(C-2A - 2mH?) i+ COb. (5)

Now, considering Eq. (1) with i=3 in the limit of small ¢,
we obtain

(C+mR>—=mRH}) i+ (C+mR?)0=2mRHyrp.  (6)

Equations (5) and (6) are linear and homogeneous in ¢, 6,
and their time derivatives. So, positing a linear relation be-

tween ¢ and 6, we find that the following two equations are
equivalent to Egs. (5) and (6):

b+ 6=0 (7)
and

)

—==2—. 8

J 4 (8)

Note that Eq. (7) agrees with the results of the numerical
simulation, as in Fig. 5(i). Even though this equation was
derived for small ¢, this equation is approximately true at
large ¢ as well if the initial conditions of the motion at large
¢ have ¢(0)=0(e) and 6(0)=0(e), as is the case for the
near-collisional motions we consider.

Integrating Eq. (8), we obtain

. by

= E.

Thus, when ¢<<1, both ¢ and 6 (:—1];) become very large.
Now consider Eq. (1) with i=2 and with ¢<<1:

&)

—(A+mR*>+mH* ¢
= P H(C — A+ mR* = mH?) + y0p(C + mR?)

+mHR YO+ mHRy? + mgR. (10)
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Using Eq. (7) in Eq. (10) and ignoring higher order terms in
¢, we obtain

(A +mR*+ mH?*) = (A + mH?) py? — mgR. (11)

Using Eq. (9) for ¢ in the above equation and neglecting the
mgR term (as it is a constant and therefore, much smaller
than 1/¢° for small ¢), we get

(.{) A +mH? (12)
T A+mRP+mH* ¢
where

A +mH? )

by=—""—F——b5.
3T A+ mR*+ mH?

(13)

The general solution for the differential equation in ¢, Eq.
(12), can be written as

& = §F+ bsy(1—1,)21 47, (14)

where ¢, is the lowest ¢ attained by the container before
rising back up again, and 7=t, is when this minimum ¢ is
attained. Substituting this equation in Eq. (9), we obtain a
simple equation for the evolution of ¢ when near the surface:

_by_ by
P G bat-1)

We can now compute the change in ¢ during a small time
interval At centered at r=t,.

1=Ar t.—At b2
Awurn=f lpdt:f dt
t t+A? ¢3 + b3(t - tc)z/d’?

b [b,Ar
=2—= tan‘(%)
o

A +mR?> + mH? » \e”b_3At
=2\/——F——— 5 tan — |-
A+mH 1)

c

o

From conservation of energy, we can show that b,, and there-
fore b, must be O(¢,) (see Appendix B). Hence, b3/ ¢
— as ¢.— 0. Keeping Ar a small constant as we let ¢,
— 0, thus approaching the collisional limit, gives us the fol-
lowing expression for A.

Ay, 5 [ A+mH? —
m= T 5 o ptan (®
tu A +mR? + mH?
/ A+ mH? (15)
"N A+ mRE+ mH

This is the limiting angle of turn when the container rocks by
rolling without slip. Earlier numerical integrations agree
quite well with this formula near the collisional limit, as they
should.

V. ANGLE OF TURN FOR FRICTIONLESS SLIDING

We now briefly outline the procedure for deriving the
angle of turn for the frictionless case. The procedure closely
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parallels that described for the no-slip case, except for small
differences below. The frictionless equations (1) and (3) cor-
responding to i=3 simplifies to

Ci / 6)=0
dt(wcos¢+ ) =0,

6+ cos p=const=b,, say. (16)

Here, b;=0(e)<<1 because the initial conditions satisfy
6(0)=0(e) and {0)=0(e) by assumption, as before. Using
Eq. (16) in the frictionless equations (1) and (3) correspond-
ing to i=1, we have, after some simplifications:

b__ ¢
" ¢
'=%, (17)

where b, is a constant of integration, whose order is esti-
mated in Appendix B. Substituting this into the =2 friction-
less equation and simplifying by neglecting all higher order
¢ terms, we eventually obtain

A b
A+mR>

b= (18)

Using arguments identical to the pure-rolling case, this re-
sults in the following expression for the angle of turn:

A +mR?
Alﬂturn= ™ A (19)

for the frictionless limit.

VI. AN ALTERNATE HEURISTIC SMALL
ANGLE TREATMENT

In this section, we derive the same angle of turn formulas
(15) and (19) without referring back to the complicated full
dynamical equations. Rather, using heuristic reasoning, we
directly derive equations of motion that apply at the small
angle limit (0<¢<<1).

We represent the lean of the cylinder by the vector & with
magnitude equal to ¢ and direction along the e, axis: ®
= ¢e,;. These quantities P, ¢, and ¢ are related to ‘each other
exactly like r, r, and 6, respectively, in traditional polar co-
ordinates.

Neglecting any angular velocity component along e,, the

angular velocity vector for the cylinder is given by o

= (ﬁey = ¢¢ex 1- The rate of change of angular momentum H;
about the center-of-mass G is given by

: L4 .
HG=A‘D=AE(¢%1)=—A(¢¢+2¢lﬂ)ex1

+A(d— piP)e,. (20)

The angular momentum balance equation is then given by
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H;=M,, (21)

where Mg; is the moment of all the external forces about G.
M, depends on whether or not there is friction; so we treat
the two cases in turn.

A. Sliding without friction

The vertical position of the center-of-mass is zg
=R sin(¢)+H cos(¢). So 7;~R¢. The vertical ground reac-
tion is thus mZ;=mR ¢, neglecting gravity mg in comparison.
The moment M; of this vertical force about the center-of-
mass G is equal to —m(R cos ¢—H sin ¢p)Rp=~—-mR>¢ in the
direction e,;. Substituting this along with Eq. (20) in the
angular momentum balance equation (21), we have

- mR e, =A(p— piP)e, — Aldyr+ 2 e,

This vector equation is identical to Egs. (17) and (18) and
therefore, lead to the same angle of turn [Eq. (19)].

B. Rolling without slip

The position of the center-of-mass G with respect to the
point P’ on the cylinder in contact with ground is given by
rg=rp—(R-Hp)e, +(Rp+H)e,. The velocity of the
center-of-mass G is given by fG=tPr+(i) X (rg—rpr). Using
the no-slip constraint rp,=0, we obtain after some simplifi-

cations, the acceleration of the center-of-mass to first order to
be

io=H(d— dpyPle, + H(p+2die, + Rde,. (22)

The ground reaction force, which now includes a horizontal
friction force as well, is simply mf¥;, neglecting gravity. The
moment of this ground reaction force about G is given by

Mg = (rp — 1) X mig = — e mH* (i + 2ih)

- e, m[R2p+ H (- dpy?)] - e mRH(ijr+ 2 ih).

Equating M; above to H,; from Eq. (20) gives Eqgs. (8) and
(11) from the previous version of the derivation, therefore
resulting in the same formula for the angle of turn [Eq. (15)].

VII. QUANTITATIVE COMPARISONS

First and most significantly, note that the limiting angle of
turn does not depend on the initial conditions such as the
initial tilt and tip velocity. This means that we do not have to
control these accurately in an experiment. This also agrees
with the relatively small variance in the histogram of Fig. 3,
in which we did not control the initial conditions.

The histogram Fig. 3 was obtained using the cylindrical
container shown in Fig. 1 with R=5.1 cm, H=6.9 cm, A/m
=5.13X 1072 m?. Using these numbers in the angle of turn
formulas gives an angle of turn of about 220° for frictionless
sliding and an angle of turn of 202° for rolling without slip.
These angles of turn would manifest as a deviation of either
40° or 22° from falling over to exactly the diametrically
opposite side. In the toppling experiment of Fig. 3, the con-
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tainer orientation was 33° on average from 180° in the left-
ward falls (suggesting an angle of turn of 213°) and was
about 37.9° on average from 180° in the rightward falls (sug-
gesting angle of turn of 217.9°). The standard deviations
were respectively 3.9 and 4.5° respectively. The experimen-
tal angle of turn seems better predicted by the asymptotic
formula for frictionless sliding in this case. Although, neither
the frictionless limit nor the no-slip limit is just right, both
limits capture the many qualitative aspects of the motion
quite well.

VIII. SPECIAL LIMIT: TALL THIN CONTAINERS

For tall thin cylinders with A~mH? and H>R, both
equations for the angle of turn (15) and (19), tend to 7 radi-
ans. That is, very tall cylinders are predicted to have a
smaller symmetry breaking. This prediction agrees with the
common experience that when we tip a tall-enough cylinder
(something that looks more like a tall thin beer bottle) in a
manner that its bottom surface nearly falls flat, the cylinder
essentially rocks up on a contact point almost diametrically
opposite to the initial contact point. Thus, this apparently
almost-symmetric rocking is accomplished by a rapid asym-
metric rolling or sliding of the container over roughly one
half of its bottom rim. This result is basically independent of
the container-table frictional properties.

IX. SPECIAL LIMIT: DISKS

We may define a disk as a container with zero height: H
=0, a good approximation is the Euler’s disk [10]. If the
radius of gyration of a disk is R,=kR, then C =mR?k* and
A=mR?k?/2. Substituting these into the angle of turn formu-
las for the no-slip [Eq. (15)] or the frictionless [Eq. (20)]
cases, we obtain the same angle of turn

Athyn = T2 + KK (23)

Indeed, numerical exploration with Egs. (1)—(3), suitably
modified for frictional slip and specialized to disks, shows no
dependence of the angle of turn Ay, on the form of the
friction law or the magnitude of the friction. This lack of
dependence on friction could be anticipated from our small
angle calculations for pure rolling cylinders, specialized to
disks. In particular, we find that the acceleration of the
center-of-mass for a pure rolling cylinder [Eq. (22)] with H
=0 is vertical in the small-angle limit, enabling the no-slip
condition to be satisfied even without friction. Thus, the roll-
ing solution is obtained with or without friction. For the spe-
cial case of pure-rolling disks, Eq. (23) was found in Ref.
[2].

A homogeneous disk has_ k=1/\2. The corresponding
angle of turn is equal to 7y5=2.237r, which is about 41°
more than a full rotation of the contact point. This prediction
is easily confirmed in casual experimentation with metal
caps of large-mouthed bottles or jars on sturdy tables—for
such caps, we observe that the new contact point is invari-
ably quite close to the old contact point.

A ring such as the rim of a bicycle wheel has k=1. The
corresponding angle of turn is equal to 77y3~1.7377, which

PHYSICAL REVIEW E 78, 066609 (2008)

is about 48° less than a full rotation of the contact point.
Thus the apparent near-collisional behavior of a homoge-
neous disk and a ring will be superficially similar, even
though the actual angles of turn differ by about 90°.

The angle of turn can be controlled by adjusting k. For
instance, between a ring and a disk is an object that appears
to bounce straight back up the way it falls. And it is possible
to increase the theoretical angle of turn without bound by
choosing k— 0, a disk in which almost all the mass is con-
centrated at the center.

X. SUMMARY

Here we analyzed what happens when a cylinder or a disk
rocks to an almost flat collision on its bottom surface. We
found that the smallest deviation from a perfect face-down
collision of a container’s bottom results in a rapid rolling
and/or sliding motion in which the contact point moves
through a finite angle in infinitesimal time. Calculations of
this finite angle explain certain apparent symmetry breaking
in experiments involving rocking or toppled containers.

In this system, the consequences of such a degenerate
“collision” are a discontinuous dependence on initial condi-
tions (rolling left or rolling right depend on the smallest de-
viations in the initial conditions). Such discontinuous depen-
dence on initial conditions or geometry is a generic feature
of systems in the neighborhood of simultaneous collisions.
Other examples include a pool break or the rolling polygon
of Ref. [6].
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APPENDIX A: DERIVING EQUATIONS OF MOTION

The moment of inertia tensor of the cylinder about its
center of mass is, in dyadic form,

IG =A(ex2 ® ex2) +A(ey2 ® eyZ) + C(eZZ ® ez2) . (Al)

The angular velocity € of the cylinder is given by

Q = sin e, — e, + (0+ Peos ple.,. (A2)

The angular momentum about the center-of-mass is

H,;=1,Q=Aisin de,, - Ade,, + C(0+ cos Pe,,.
(A3)
The rate of change of angular momentum H,; is given by the
sum of two terms: (1) the rate of change relative to the ro-

tating frame e,,-e,,-e_,, obtained by simply differentiating
the components in Eq. (A3) and (2) the rate of change (),
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XH,; due to the rotation of the e,,-e,-e, frame with an
angular velocity Q,= sin ge,,— (ﬁe},z + 1 cos de.
H,; = [2A0d cos ¢+ Agrsin p— CPH(6+ ycos @) e,
+[—Ad+ Ay sin ¢ cos ¢— Cifsin ¢(0
+ i cos @)le,, + C(— & sin ¢+ hcos p+ é)ez2.
(A4)

1. No-slip rolling

The point S on the cylinder in contact with the ground has
zero velocity vg=0, no slip. Using r¢s=rps=Re,,+He,, the
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velocity v of the center-of-mass is given by

VG=V5+Q XrPG=0_H¢eX2+R¢e22

+(RO+ Riycos ¢p— Hisin de,,.
(AS)

The acceleration of the center-of-mass ag is given by adding
two terms: (1) acceleration relative to the rotating e,,-e,,-€,,
frame, obtained by differentiating the components in Eq.
(A5) and (2) an acceleration term ) X v due to the rotation
of e,-€,,-€,, frame. We obtain

ag=dvgldi=(— Hp— R — Ricos ¢pO— Ryfcos® ¢+ HiP cos ¢ sin e, + (— 2Ripip sin p— 2H s cos ¢+ Rifrcos ¢

— Hyrsin ¢+ RO)e,, + (R + Ry sin ¢+ Ry sin ¢ cos p— HyPsin® p— HP)e.,.

The contact force Fp is given by linear momentum balance

Then, the moment M, of all the external forces about the center-of-mass is

(A6)
Fp=mag+mge,. (A7)
M/GerPXsz—rPGXFPzBlex2+Bzey2+B3ezz, (AS)

in which, upon simplification, we have

B, = mH(— 2R sin ¢ — 2H s cos ¢+ Rijrcos p— Hirsin ¢+ R6),

B, =m(— gH sin ¢+ H>+ HRs0 cos ¢ + 2HRPcos® ¢ — H*y7 cos ¢ sin ¢+ gR cos ¢+ R*+ R>§f sin ¢

+ R%*J7 sin ¢ cos ¢ — RHJP),

Bs=—mR(~ 2Ry sin ¢ — 2Hs cos ¢+ Rify cos ¢p— Hifssin ¢+ R6).

Equating M,; and H,G gives us the angular momentum bal-
ance equations of motion for no-slip rolling in Egs. (1) and

2).
2. Frictionless sliding

No friction implies that the horizontal velocity of the
center-of-mass G is a constant and can be set to zero by
appropriate reference frame choice, without loss of general-
ity. Further, noting that z;=R sin ¢+ H cos ¢, we have, by
differentiating twice:

ag=7ge,=[(R cos ¢— H sin ¢p)— (R sin ¢
+ H cos ¢)d?le. =sin ¢[(R cos ¢ — H sin )
— (R sin ¢+ H cos ¢)¢*le,, + cos ¢[ (R cos ¢

— H sin ¢)— (R sin ¢+ H cos ¢)P*le.,.

As before, we compute the contact force as Fp=mag+mge,
and compute the net moment M about the center-of-mass as

M, =rgp X Fp=m(R cos ¢ — H sin ¢)(- R’ sin ¢
+R¢cos p—H? cos p— Hepsin p+g)e,,.

Again, equating M,; with the H/G before gives us the re-
quired equations of motion (1) and (3).

APPENDIX B: SCALING OF b,

1. No-slip rolling

We now establish that b,=0(¢,), used in obtaining Eq.
(15). The total mechanical energy E of the cylinder, a con-
stant, is given by
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2E=m(VG‘VG)+Q IGQ+PE (Bl)

=m@*(H* + R?) + C(0+ i) cos ¢)?
+m(RO+ Ry cos ¢ — Hisin ¢p)?

+A¢d? +Ay? sin®> p+PE. (B2)

in which P.E. is the potential energy. We consider this total
energy at the time of lowest tip angle ¢, t=t., we have ¢
=0, ¢=d¢, P=b,/ qﬁf, and the potential energy PE.
=mg(R sin ¢+ H cos ¢)=const+O(¢,). Making use of the
usual small ¢ approximations (as used in the main text) and

Eq. (7), namely, 1,7;+ H~ 1,2/4), we find that
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E~ PeR= (ﬁ)zdf (B3)
C\gr) T

Because E is a constant, we have b3=0(¢?) or b,=0(¢,) as
claimed earlier.

2. Frictionless sliding

The total mechanical energy E is now given by
2E =md?(R cos ¢— H sin ¢)> + Ay sin® p+ Ay’

+C(0+ pcos $)>+mg(R sin p+ H cos ¢). (B4)

Again, using small ¢, approximations and considering the
energy equation at t=t,, we obtain b,=0(¢,), using argu-
ments identical to the no-slip rolling case.
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